Crossover isomer bias is the primary sequence-dependent property of immobilized Holliday junctions.
نویسندگان
چکیده
Recombination of genes is essential to the evolution of genetic diversity, the segregation of chromosomes during cell division, and certain DNA repair processes. The Holliday junction, a four-arm, four-strand branched DNA crossover structure, is formed as a transient intermediate during genetic recombination and repair processes in the cell. The recognition and subsequent resolution of Holliday junctions into parental or recombined products appear to be critically dependent on their three-dimensional structure. Complementary NMR and time-resolved fluorescence resonance energy transfer experiments on immobilized four-arm DNA junctions reported here indicate that the Holliday junction cannot be viewed as a static structure but rather as an equilibrium mixture of two conformational isomers. Furthermore, the distribution between the two possible crossover isomers was found to depend on the sequence in a manner that was not anticipated on the basis of previous low-resolution experiments.
منابع مشابه
Spermidine biases the resolution of Holliday junctions by phage λ integrase
Holliday junctions are a central intermediate in diverse pathways of DNA repair and recombination. The isomerization of a junction determines the directionality of the recombination event. Previous studies have shown that the identity of the central sequence of the junction may favor one of the two isomers, in turn controlling the direction of the pathway. Here we demonstrate that, in the absen...
متن کاملSwapping DNA strands and sensing homology without branch migration in λ site-specific recombination
Background: Many site-specific recombinases act by forming and resolving branched Holliday junction intermediates. Previous findings have been consistent with models involving branch migration across the 'overlap region' of obligate homology, located between the staggered sites where the two single-strand exchanges occur. We have investigated the validity of such models in the case of bacteriop...
متن کاملHolliday junction resolvase in Schizosaccharomyces pombe has identical endonuclease activity to the CCE1 homologue YDC2.
A novel Holliday junction resolving activity has been identified in fractionated cell extracts of the fission yeast Schizosaccharomyces pombe . The enzyme catalyses endonucleolytic cleavage of Holliday junction-containing chi DNA and synthetic four-way DNA junctions. The activity cuts with high specificity a synthetic four-way junction containing a 12 bp core of homologous sequences but has no ...
متن کاملActivation of RuvC Holliday junction resolvase in vitro
The Escherichia coli RuvC protein is an endonuclease that resolves Holliday junctions. In vitro, the protein shows efficient structure-specific binding of Holliday junctions, yet the rate of junction resolution is remarkably low. We have mapped the sites of cleavage on a synthetic junction through which a crossover can branch migrate through 26 bp and find that > or = 90% of the junctions were ...
متن کاملRecombination: Holliday Junction Resolution and Crossover Formation
The heterodimeric nuclease Mus81-Eme1 has been proposed to be a Holliday junction resolvase and has now been found to be responsible for nearly all meiotic crossovers in fission yeast. The intriguing substrate preference of this enzyme for nicked Holliday junctions opens the possibility that crossover formation may not always involve double Holliday junctions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 17 شماره
صفحات -
تاریخ انتشار 1997